

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

#### CHEMISTRY

9701/43 May/June 2017

Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

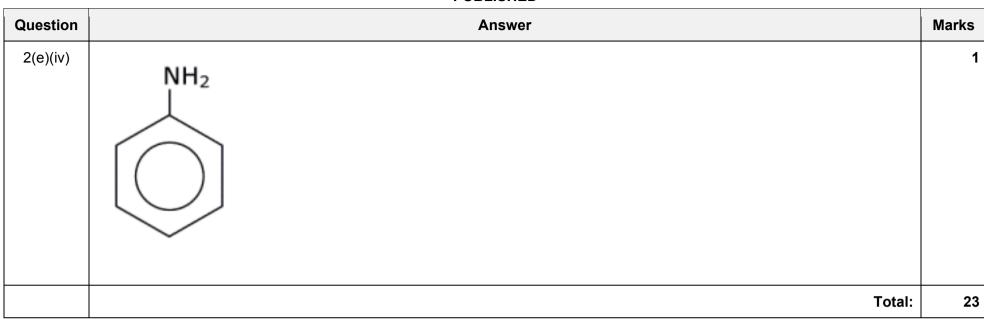
Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

International Examinations

https://xtremepape.rs/

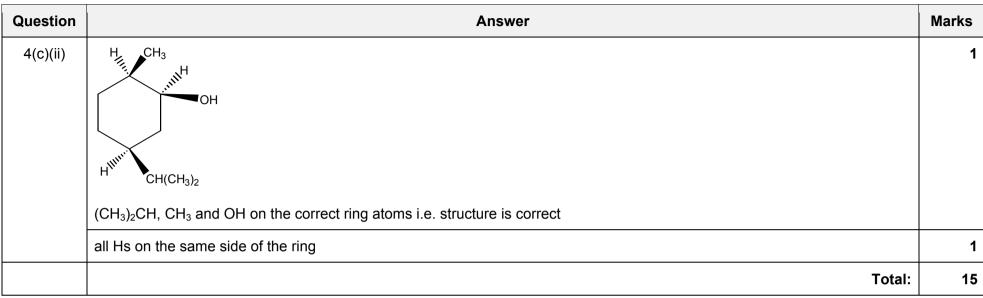

| Question  | Answer                                                                                                                                                                              | Marks |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1(a)      | solubility increases down the group                                                                                                                                                 | 1     |
|           | $\Delta H_{\text{latt}}$ and $\Delta H_{\text{hyd}}$ both <b>decrease</b><br>or $\Delta H_{\text{latt}}$ and $\Delta H_{\text{hyd}}$ both become less exothermic / more endothermic | 1     |
|           | $\Delta H_{\text{latt}}$ decreases / changes more (than $\Delta H_{\text{hyd}}$ as OH <sup>-</sup> being smaller than M <sup>2+</sup> )                                             | 1     |
|           | $\Delta H_{sol}$ becomes more exothermic / more negative / less endothermic / less positive                                                                                         | 1     |
| 1(b)(i)   | $\Delta H_{r1} - (538 + 2x230 + 394) = -(1216 + 286)$                                                                                                                               | 1     |
|           | $\Delta H_{\rm r1} - 1392 = -1502$                                                                                                                                                  |       |
|           | $\Delta H_{r1} = -110$                                                                                                                                                              | 1     |
| 1(b)(ii)  | let $\Delta H_{f}(HCO_{3}^{-}(aq)) = y$                                                                                                                                             | 1     |
|           | 2y - 538 = -1216 - 394 - 286 - 26                                                                                                                                                   |       |
|           | y = -692                                                                                                                                                                            | 1     |
| 1(b)(iii) | $\Delta H_{r3} - 538 - 2(230 + 394) = -538 - 2(692)$                                                                                                                                | 1     |
|           | $\Delta H_{r3} = -136$                                                                                                                                                              |       |
| 1(b)(iv)  | $\Delta H_{r3}$ will be identical to $\Delta H_{r4}$ , / unchanged                                                                                                                  | 1     |
|           | as the reaction is the same, or:                                                                                                                                                    | 1     |
|           | $2OH^{-}(aq) + 2CO_{2}(g) \longrightarrow 2HCO_{3}^{-}(aq)$ or                                                                                                                      |       |
|           | metal ions stay in solution/metal ions are unchanged / are spectators                                                                                                               |       |

9701/43

| Question | Answer                                                                                                                                                | Marks |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1(c)     | more <b>gaseous moles</b> are being consumed (in reaction 3)<br><b>or</b> more <b>CO</b> <sub>2</sub> <b>moles</b> are being consumed (in reaction 3) | 1     |
|          | $\Delta S$ is therefore expected to be <b>more negative/less positive</b> for reaction 3.                                                             | 1     |
|          | Total:                                                                                                                                                | 13    |

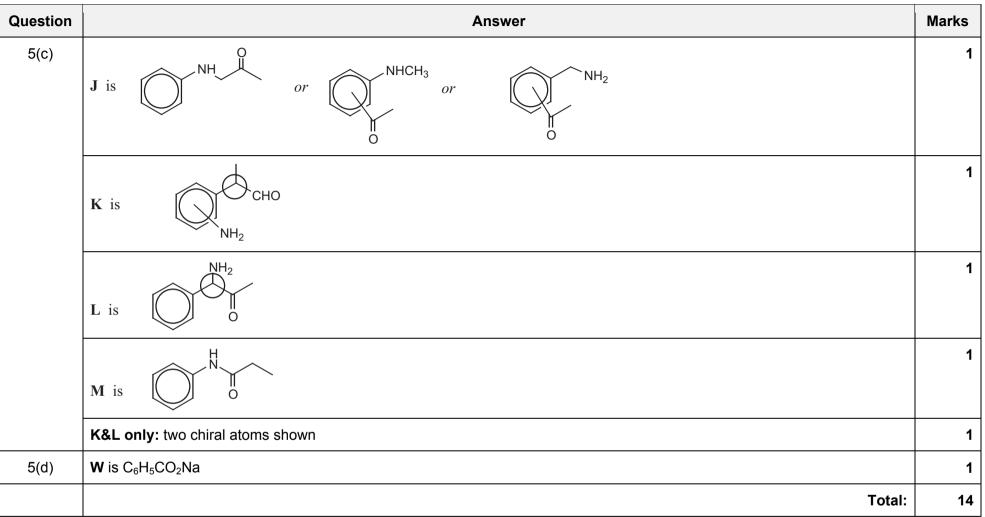
| Question  | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Marks |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2(a)(i)   | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ | 1 + 1 |
|           | 16 electrons on each diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1     |
| 2(a)(ii)  | HNC = 115–125° AND NCO = 180°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1     |
| 2(a)(iii) | cyanic acid, because it's a stronger / higher bond enthalpy / triple / C≡N / more electrons involved bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     |
| 2(b)(i)   | $[H^+] = \sqrt{([HNCO]K_a)} = \sqrt{(0.1 \times 1.2 \times 10^{-4})} \text{ or } 3.46 \times 10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1     |
|           | $pH = log [H^+] = 2.5 (2.46)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1     |
| 2(b)(ii)  | $Na_2CO_3 + 2(NH_2)_2CO \longrightarrow 2NaNCO + CO_2 + 2NH_3 + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1     |
| 2(c)(i)   | $(n(OH^{-}) \text{ at start} = (2 \times 0.1 \times 30) / 1000 = 6 \times 10^{-3} \text{ mol})$<br>$(n(OH^{-}) \text{ reacted} = (0.1 \times 20) / 1000 = 2 \times 10^{-3} \text{ mol})$<br>$n(OH^{-}) \text{ remaining} = (6-2) \times 10^{-3} = 4 \times 10^{-3} \text{ mol}, (in 50 \text{ cm}^{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1     |
|           | so $[OH^{-}]_{end} = (4 \times 10^{-3} \times 1000) / 50 = 0.08 \text{ mol dm}^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |

| Question  | Answer                                                                                                              | Marks |
|-----------|---------------------------------------------------------------------------------------------------------------------|-------|
| 2(c)(ii)  | $[H^+] = K_w / [OH^-] = (1 \times 10^{-14}) / 0.08 = 1.25 \times 10^{-13} \text{ mol dm}^{-3}$                      | 1     |
|           | so pH = $-\log(1.25 \times 10^{-13})$ = <b>12.9</b>                                                                 | 1     |
| 2(c)(iii) | curve starts at 2.46 / 2.5                                                                                          | 1     |
|           | vertical portion (end point) at vol added = $10.0 \text{ cm}^3$                                                     | 1     |
|           | finishes at pH = 12.9                                                                                               | 1     |
| 2(d)(i)   | monodentate: (a species that) forms one dative / coordinate bond                                                    | 1     |
|           | ligand: a species that uses a lone pair of electrons to form a dative / coordinate bond to a metal atom / metal ion | 1     |
| 2(d)(ii)  | [Ag(NCO) <sub>2</sub> ] <sup>-</sup> or [Ag(OCN) <sub>2</sub> ] <sup>-</sup> correct formula                        | 1     |
|           | correct charge                                                                                                      | 1     |
| 2(e)(i)   | $n(BaCO_3) = 1.66 / 197.3 = 8.4(1) \times 10^{-3} mol$                                                              | 1     |
| 2(e)(ii)  | $n(RNCO) = 8.41 \times 10^{-3} \text{ mol, so } M_r = 1 / (8.41 \times 10^{-3}) = 119$                              | 1     |
| 2(e)(iii) | molecular formula = C <sub>7</sub> H <sub>5</sub> NO                                                                | 1     |




| Question | Answer                                                      | Marks |
|----------|-------------------------------------------------------------|-------|
| 3(a)(i)  | +3 or Co <sup>3+</sup>                                      | 1     |
| 3(a)(ii) | oxidation                                                   | 1     |
|          | ligand displacement / replacement / exchange / substitution | 1     |

9701/43


| Question  | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ma     | larks |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|--|--|
| 3(a)(iii) | $\begin{bmatrix} I \\ H_{3}N/III, I \\ H_{3}N/III, I \\ H_{3}N/III, I \\ CI \\ CI \end{bmatrix}^{+} or \begin{bmatrix} I \\ H_{3}N/III, I \\ CI \\ H_{3}N/III, I \\ CI \\ H_{3}N/III, I \\ CI \\ H_{3}N/III, I \\ III \\ IIII \\ III \\ IIII \\ III \\ III \\ III \\ III \\ III \\ IIII \\ IIII \\ IIII \\ III \\ IIII \\ III \\ III \\ IIII \\ III \\ IIII \\ IIIII \\ IIII \\ IIIII \\ IIII \\ IIII \\ IIII \\ IIII \\ IIIII \\ IIII \\ IIII \\ IIII \\ IIII \\ IIIIII$ |        | 1+1   |  |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 1     |  |  |
|           | geometrical or cis-trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 1     |  |  |
| 3(b)(i)   | The number of bonds / atoms bonded to an atom / ion / species / metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |       |  |  |
| 3(b)(ii)  | <b>C</b> 6 $[Cr(CN)_6]$ –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 6     |  |  |
|           | <b>D</b> – $[Ni(NH_2CH_2CH_2NH_2)_3]$ 2+/+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |       |  |  |
|           | <b>E</b> 4 [PtC4] –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |       |  |  |
|           | <b>F</b> 3 – 3–/–3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |       |  |  |
| 3(c)(i)   | $K_{\text{stab}(1)} = [\text{FeSCN}^{2+}]/([\text{Fe}^{3+}][\text{SCN}^{-}])$ mol <sup>-1</sup> dm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 3     |  |  |
|           | $K_{\text{stab}(2)} = [\text{FeC}l_4^-]/([\text{Fe}^{3+}][\text{C}l]^4)  \text{mol}^{-4}  \text{dm}^{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |       |  |  |
| 3(c)(ii)  | $K_{eq(3)} = K_{stab(1)} / K_{stab(2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 1     |  |  |
| 3(c)(iii) | $K_{eq(3)} = 1750$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 1     |  |  |
|           | mol <sup>3</sup> dm <sup>-9</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 1     |  |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total: | 19    |  |  |

| Question  | Answer                                                                                                                                    | Marks |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 4(a)(i)   | optical, because it contains a / one chiral C-atom or chiral C-atoms or chiral atom / centre or C* indicated or C with 4 different groups | 1     |
| 4(a)(ii)  | $C_{10}H_{14}O + 3H_2 \longrightarrow C_{10}H_{20}O$ correct formulae                                                                     | 1     |
|           | balancing                                                                                                                                 | 1     |
| 4(b)(i)   | electrophilic substitution                                                                                                                | 1     |
| 4(b)(ii)  | step 3 reduction                                                                                                                          | 1     |
|           | step 5 substitution / hydrolysis                                                                                                          | 1     |
| 4(b)(iii) | step 1 $(CH_3)_2CHCl + AlCl_3 / AlBr_3 / FeCl_3 / FeBr_3$                                                                                 | 1+1   |
|           | step 2 $HNO_3 + H_2SO_4$ conc (T < 55 °C)                                                                                                 | 1     |
|           | step 3 Sn + HC1                                                                                                                           | 1     |
|           | step 4 $HNO_2$ (or $NaNO_2 + HCl$ ) (at T < 10 °C)                                                                                        | 1     |
|           | the two temperatures for steps 2 and 4                                                                                                    | 1     |
| 4(c)(i)   | $H_2$ + Pt or $H_2$ + Ni + heat or pressure                                                                                               | 1     |



| Question | Answer                                                        |                        |                            |                        |       |       |
|----------|---------------------------------------------------------------|------------------------|----------------------------|------------------------|-------|-------|
| 5(a)     |                                                               | J                      | К                          | L                      | Μ     |       |
|          |                                                               | amine<br>methyl ketone | aromatic amine<br>aldehyde | amine<br>methyl ketone | amide |       |
|          | J and L correct                                               |                        |                            |                        |       | 1 + 1 |
|          | K correct                                                     |                        |                            |                        |       |       |
|          | M correct                                                     |                        |                            |                        |       | 1     |
| 5(b)(i)  | hydrolysis                                                    |                        |                            |                        |       | 1     |
| 5(b)(ii) | P is C <sub>6</sub> H <sub>5</sub> NH <sub>2</sub>            |                        |                            |                        |       |       |
|          | <b>Q</b> is CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub> N | Na                     |                            |                        |       | 1     |

https://xtremepape.rs/



| Question  | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6(a)      | Any of the three methods possible. Any 4 of the 5 points for each method available for maximum 4 marks.<br>Method 1 1 Ensure both solutions ( <b>A</b> and <b>B</b> ) at 40 °C before mixing 2 mix known volumes of <b>A</b> and <b>B</b> and start the clock 3 at known time take out a sample / <b>X</b> and add it to ice-cold solvent 4 titrate against HC <i>I</i> 5 repeat at time at known time intervals Method 2 1 Ensure both solutions ( <b>A</b> and <b>B</b> ) at 40 °C before mixing 2 mix known volumes of <b>A</b> and <b>B</b> and start the clock 3 at known time pour into ice-cold solvent or pour ice-cold solvent in 4 titrate against HC <i>I</i> 5 repeat with different concentrations of either A or B, or repeat using different times Method 3 1 Ensure both solutions ( <b>A</b> and <b>B</b> ) at 40 °C before mixing 2 mix known volumes of <b>A</b> and <b>B</b> and start the clock 3 at known time intervals Method 3 1 Ensure both solutions ( <b>A</b> and <b>B</b> ) at 40 °C before mixing 2 mix known volumes of <b>A</b> and <b>B</b> and start the clock and add pH meter 3 at a known time 4 record the pH 5 repeat pH readings at known time intervals | 4     |
| 6(b)(i)   | from 1 and 3: when $[RCl]$ is trebled, so is rate, so order w.r.t. $[RCl] = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1     |
|           | from 1 and 2: when both concentrations are doubled, rate doubles so [OH <sup>-</sup> ] has no effect on rate, so order w.r.t.[OH <sup>-</sup> ] = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1     |
| 6(b)(ii)  | rate = $k[RCl]$ AND units: sec <sup>-1</sup> 1/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |
| 6(b)(iii) | relative rate = 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1     |

9701/43

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6(c)(i)  | $C_{6}H_{5} \xrightarrow{C_{1}O^{-}} C_{6}H_{5} \xrightarrow{C_{6}H_{5}} C_{6}H_{5} \xrightarrow{C_{6}H_{5}} C_{6}H_{5} \xrightarrow{OH} C_{1}H_{1}H_{1}H_{1}H_{1}H_{1}H_{1}H_{1}H$                                                                                                                                                                                                                                                                                                        | 1     |
|          | intermediate cation                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1     |
|          | OH <sup>-</sup> with lone pair and curly arrow                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     |
| 6(c)(ii) | <ul> <li>Beginning with candidate's mechanism in (c)(i):</li> <li>If S<sub>N</sub>1: racemate / mixture of / two optical isomers will be formed, because: the intermediate is planar / has a plane of symmetry / OH<sup>-</sup> can approach from top or bottom or from any direction</li> <li>If S<sub>N</sub>2: one optical isomer because attack always from fixed direction / from same side / the "configuration" always inverts / there is an asymmetric transition state</li> </ul> | 1     |

https://xtremepape.rs/

| Question | on Answer                                                                                                                     |                |                                     |                         |           |                              |        | Marks |
|----------|-------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------|-------------------------|-----------|------------------------------|--------|-------|
| 6(d)(i)  |                                                                                                                               | $\delta$ value | number of H atoms                   | group                   | splitting | result with D <sub>2</sub> O |        |       |
|          |                                                                                                                               | 1.4            | 3                                   | CH₃ / methyl            | doublet   | peak remains                 |        |       |
|          |                                                                                                                               | 2.7            | 1                                   | OH / hydroxyl / alcohol | singlet   | peak disappears              |        |       |
|          |                                                                                                                               | 4.0            | 1                                   | СН                      | quartet   | peak remains                 |        |       |
|          | the three groups are in their correct places wrt the $\delta$ values<br>no. of H atoms for each peak agrees with group column |                |                                     |                         |           |                              | 1      |       |
|          | splitting patterns doublet, singlet and quartet are assigned to correct groups                                                |                |                                     |                         |           |                              | 1      |       |
|          | peak identified                                                                                                               | as OH di       | isappears with D <sub>2</sub> O, no | o other peak disappears |           |                              |        | 1     |
|          |                                                                                                                               |                |                                     |                         |           |                              | Total: | 16    |